US009276829B2

a2 United States Patent

Castro et al.

US 9,276,829 B2
Mar. 1, 2016

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(65)

(1)

(52)

(58)

TRANSPARENTLY TRACKING
PROVENANCE INFORMATION IN
DISTRIBUTED DATA SYSTEMS

Applicant: INTERNATIONAL BUSINESS
MACHINES CORPORATION,
Armonk, NY (US)

Paul C. Castro, Sharon, MA (US);
Marco Pistoia, Amawalk, NY (US);
John Ponzo, Shrub Oak, NY (US)

Inventors:

INTERNATIONAL BUSINESS
MACHINES CORPORATION,
Armonk, NY (US)

Assignee:

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 332 days.

Appl. No.: 13/761,916

Filed: Feb.7,2013

Prior Publication Data

US 2014/0222994 A1 Aug. 7, 2014

Int. CL.
GO6F 9/44
GO6F 9/45
HO4L 12726
GO6F 9/00
HO4L 29/06
HO4L 29/08
U.S. CL
CPC HO4L 43/08 (2013.01); GO6F 9/00 (2013.01);
HO4L 63/12 (2013.01); HO4L 63/123
(2013.01); HO4L 67/10 (2013.01)
Field of Classification Search
USPC 717/130
See application file for complete search history.

(2006.01)
(2006.01)
(2006.01)
(2006.01)
(2006.01)
(2006.01)

(56) References Cited
U.S. PATENT DOCUMENTS
5,450,586 A * 9/1995 Kuzaraetal. 717/124
7,539,753 B2 5/2009 Amini et al.
8,229,775 B2 7/2012 Adler et al.
8,949,809 B2* 2/2015 Varma GOGF 8/443
717/150
8,972,334 B2* 3/2015 Castroetal.cc......... 707/600
2007/0234270 Al* 10/2007 Cohenetal. 717/100
2010/0023533 Al* 1/2010 Celietal. 707/100
2010/0114628 Al* 52010 Adleretal.cccoeeeeeenn. 705/7
2011/0218920 Al 9/2011 Agrawal et al.
2011/0238379 Al* 9/2011 Misraetal.ceeeene. 702/187
2012/0054146 Al 3/2012 Gupta et al.
2012/0174076 Al* 72012 Rajic .oovveveennns GOGF 11/3466
717/128
2013/0205281 Al* 82013 Pizloetal.cccooeeenn. 717/128
2013/0232476 Al* 9/2013 Varma GOGF 8/443
717/150
2014/0181023 Al* 6/2014 Castroetal. 707/634
2014/0181025 Al* 6/2014 Castro et al. ... 707/634
2014/0222994 Al* 82014 Castroetal. 709/224
2014/0223000 Al* 82014 Castroetal. 709/224

* cited by examiner

Primary Examiner — Marina Lee
(74) Attorney, Agent, or Firm — Tutunjian & Bitetto, P.C.;
Daniel P. Morris

(57) ABSTRACT

Methods and systems for enabling an application to track
provenance information include analyzing an application
binary to discover injection points for provenance tracking
code; overwriting instructions in the application binary at the
injection points to create an instrumented application, where
the overwritten instructions link the application binary to one
or more instrumented libraries that invoke a provenance layer
to track data operations; and deploying the instrumented
application on a client device.

10 Claims, 5 Drawing Sheets

Instrumented objects
302

Provenance layer
306

Instrumented libraries
304

Provenance logs
308

104

Application

U.S. Patent Mar. 1, 2016 Sheet 1 of 5 US 9,276,829 B2

Provenance
server
110
Application
104
Network }
Storage 108
106
Personal device Storgge
provider
102 112

FIG. 1

Submit an application to provenance
instrumentation
202

/

Configure the application to track
provenance of data operations
204

/

Provide new application binary having a
provenance tracking layer
206

FIG. 2

U.S. Patent Mar. 1, 2016 Sheet 2 of 5 US 9,276,829 B2

Instrumented objects Provenance layer
302 306
Instrumented libraries Provenance logs
304 308
Application
104

FIG. 3

U.S. Patent

Mar. 1, 2016 Sheet 3 of 5

Launch
application
402

US 9,276,829 B2

configuration?

Obtain
configuration
406

Configure

provenance layer
408

:

Catch data events

410

External?
412

No

Action
needed?
416

No

Log provenance
414

Perform action
418

FIG. 4

U.S. Patent

Mar. 1, 2016

|dentify new client
501

:

Receive

—

Sheet 4 of 5

provenance logs =
502

:

Process logs
504

:

Analyze logs
506

:

Create/update
state model
508

Action
needed?
510

No

FIG. 5

US 9,276,829 B2

Send command/
control message
512

U.S. Patent Mar. 1, 2016 Sheet 5 of 5

Processor Memory
602 604
Application Instruction
analysis alteration
module module
606 608

600

Application instrumentation system

FIG. 6

US 9,276,829 B2

US 9,276,829 B2

1
TRANSPARENTLY TRACKING
PROVENANCE INFORMATION IN
DISTRIBUTED DATA SYSTEMS

BACKGROUND

1. Technical Field

The present invention relates to tracking provenance infor-
mation and, more particularly, to tracking provenance infor-
mation in distributed systems by automatic embedding.

2. Description of the Related Art

Enterprises are increasingly interested in the area of data
provenance, which involves tracking the lineage of data in a
computing system. Understanding the pedigree of data is
important when determining whether to trust that data, a
process that is involved in many enterprise activities such as
maintaining data retention compliance, audits of business
processes, and tracking data security. Provenance assists in
understanding how data evolves; provenance systems can
keep information about how data is created, transformed, and
replicated across different nodes in a distributed system.

In existing provenance systems, the provenance tracking
capability is deliberately added as a data management system
that runs in parallel with the system being observed. Access to
the internals of the observed systems is needed to insert
tracking code that is specifically configured for the system. In
some cases, provenance tracking can be accomplished with
less-invasive integration, e.g. tracking provenance gained
from observing network traffic. However, this is limited in
scope, such that more invasive approaches are needed to
collect detailed provenance information that is potentially
required, e.g. tracking the version history of a data item that is
never sent over a network.

Furthermore, existing provenance tracking systems are
typically applied to enterprise applications using enterprise
storage, where access to the internals of the storage systems is
available. However, there is a trend where enterprises are
allowing their employees to use consumer devices and appli-
cations (sometimes called Bring-Your-Own-Device or
BYOD). In this environment, it is useful to track provenance
even if the user is using a non-enterprise application and
storage provider. However, existing applications and devices
do not support this type of provenance tracking, and there is
no prospect for developers of such applications to introduce
such features.

SUMMARY

A method for enabling an application to track provenance
information is shown that includes analyzing an application
binary to discover injection points for provenance tracking
code; overwriting instructions in the application binary at the
injection points with a processor to create an instrumented
application, wherein the overwritten instructions link the
application binary to one or more instrumented libraries that
invoke a provenance layer to track data operations; and
deploying the instrumented application on a client device.

A method for tracking provenance information is shown
that includes catching and logging data events performed by
an instrumented application at a provenance layer with a
processor, wherein overwritten instructions link the instru-
mented application binary to one or more instrumented librar-
ies that invoke the provenance layer to track data operations;
and creating a provenance log that includes the logged data
events.

A system for enabling an application to track provenance
information is shown that includes an application analysis

10

15

20

25

30

35

40

45

50

55

60

65

2

module configured to analyze an application binary to dis-
cover injection points for provenance tracking code; and an
instruction alteration module comprising a processor config-
ured to overwrite instructions in the application binary at the
injection points to create an instrumented application,
wherein the overwritten instructions link the application
binary to one or more instrumented libraries that invoke a
provenance layer to track data operations.

A system for tracking provenance information is shown
that includes an instrumented application binary on a client
device, wherein overwritten instructions link the instru-
mented application binary to one or more instrumented librar-
ies that invoke a provenance layer to track data operations,
wherein the provenance layer is configured to catch and log
data events performed by the instrumented application.

These and other features and advantages will become
apparent from the following detailed description of illustra-
tive embodiments thereof, which is to be read in connection
with the accompanying drawings.

BRIEF DESCRIPTION OF DRAWINGS

The disclosure will provide details in the following
description of preferred embodiments with reference to the
following figures wherein:

FIG. 1 is a diagram of a provenance tracking system in
accordance with the present principles;

FIG. 2 is ablock/flow diagram of a method for providing an
instrumented application that tracks provenance information
in accordance with the present principles;

FIG. 3 is a diagram of an instrumented application in
accordance with the present principles;

FIG. 4 is a block/flow diagram of a method for tracking
provenance information in accordance with the present prin-
ciples;

FIG. 5 is a block/flow diagram of a method for receiving
provenance information from an instrumented application in
accordance with the present principles; and

FIG. 6 is a diagram of an application instrumentation sys-
tem in accordance with the present principles.

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS

The present invention tracks data in a distributed system.
This task is complicated by data being copied and trans-
formed, which can take place multiple times across nodes.
Because a given data-transforming application may lack
provenance tracking provisions, there has been no simple way
to account for those applications in data tracking. The present
invention provides tracking in these cases by automatically
embedding provenance tracking into existing applications,
and this can be performed even if the application’s source
code is not available. The application developer need not even
be aware that provenance tracking is enabled and, from the
application perspective, no special handling of data is needed.

Once embedded in the application, embodiments of the
present invention can be configured to collect coarse-to-fine-
grained provenance data. The configuration is not static, but
can instead be done at runtime as provenance tracking needs
change. A policy enforcement mechanism can also be pro-
vided to monitor provenance data and optimize data policies.
For example, the present principles can minimize the energy
cost of replicating data over a network of mobile devices by
ensuring that data is only copied over lower-energy consum-
ing networks.

US 9,276,829 B2

3

Referring now to the drawings in which like numerals
represent the same or similar elements and initially to FIG. 1,
a data provenance system is shown within an exemplary data
flow network. A user’s personal device 102 includes a local
storage 106 and personal applications 104. The user device
may include any device possessed or controlled by the user
including, e.g., smartphones, desktop computers, laptop
computers, flash memory devices, medical devices, etc. The
personal device 102 communicates through a network 108
with, e.g., a provenance server 110 and a storage provider
112.

Many modern applications depend on network-based ser-
vices to store data. Most of these services provide simple
interfaces which allow the storage and retrieval of data by a
file identifier and/or some limited, query-based interface. The
trend of persisting data remotely from the application that
uses it is likely to grow. The device 102 provides limited local
storage 106 to applications 104 and depends on remote stor-
age providers 112 for providing higher capacity storage.

There are three general types of storage: personal storage,
enterprise storage, and consumer storage. In the realm of
personal storage, users may have multiple devices 102 that
synchronize with each other and may also have networked
storage units 106 for, e.g., backup and restore functions. An
application 104 may take advantage of these personal devices
102 to persist large data files and only keep frequently used
files local to the application. For example, a smartphone
camera application may store photos on a laptop computer
and synchronize with that laptop, keeping only a subset of the
pictures locally.

Many enterprises provide enterprise storage for applica-
tions to their employees. These can be considered storage
providers 112 and are typically kept behind firewalls, requir-
ing intranet or virtual private network access. A common
example of enterprise storage is email storage, where emails
are stored on the company email server and synchronized to
the user’s personal device 102 over an authenticated channel.
Some enterprises may provide storage interfaces that appli-
cations can use to store and access the enterprise application
data.

Because the enterprise typically will not have access to the
source code of applications 104 on the user’s personal device
102, it can be difficult to track the provenance of data that is
processed by such applications. This concern also applies to
instances where commodity applications are purchased for
use by the enterprise.

The present embodiments provide provenance tracking in
situations such as those shown in FIG. 1 by adding a prov-
enance tracking layer to existing applications. Once added,
such a provenance tracking layer can collect provenance data
at runtime, and the configuration can be modified, should new
provenance tracking needs arise. The provenance layer of
application 104 can communicate with a provenance server
110, which can analyze provenance data from multiple
instances. This analysis yields a data provenance model,
which users can view in a provenance console. The prov-
enance server 110 can also be used to optimize certain data-
related options for applications that replicate data in a distrib-
uted system. For example, the data provenance server 110 can
inform an application 104 that data should only be uploaded
to a server 112 when it meets a sufficient cost threshold.

The provenance model may be any appropriate structure.
In particular it is contemplated that the provenance model
may be represented as a graph. Such a graph may take many
forms. For example, each datum in the system would have an
associated graph that describes the history of operations over
that datum. Nodes in the graph represent operations and

30

40

45

55

4

directed edges are temporal relationships between the opera-
tions, indicating that one operation takes place after the other.
Another exemplary embodiment would have all data items in
a single graph, where nodes represent individual data items
and edges represent a replication relationship between them.
Another exemplary embodiment would have all raw prov-
enance events organized without processing in a log or a
table, but instead being listed chronologically. These embodi-
ments are described without limitation, and it is contemplated
that those having ordinary skill in the art would be able to
implement any appropriate provenance model in accordance
with the present principles.

Referring now to FIG. 2, a method for adding provenance
tracking to an application is shown. Block 202 submits an
existing application 104 for provenance instrumentation.
Developers may create such an application using their tools of
choice and simply provide a finished application binary.
Block 204 automatically and transparently configures the
submitted application 104 to track the provenance of data-
related operations. This is accomplished by providing a prov-
enance layer that monitors the application’s data activities.
Block 206 provides the modified application 104 for use. The
application 104 can be deployed on client personal devices
102 using standard application installation procedures. The
provenance layer is able to monitor system events that occur
between the application 104 and the local storage 106.

For example, a provenance layer can track when the appli-
cation 104 creates new files in the local filesystem. The prov-
enance layer can also monitor events between the application
and operations on a network-based storage provider 112. The
provenance layer maintains a log of provenance data and
either can locally process this log to create a data provenance
model or can upload the provenance data to a remote prov-
enance server which can perform any number of provenance
data management tasks.

Block 204 analyzes the application binary to discover
where to integrate the provenance tracking code. For
example, in a Java® application, block 204 locates all
instances in the binary where a ClassLoader is created. At
these locations, block 204 inserts additional code to replace
the standard ClassLoader definition with an instrumented
ClassLoader.

Once the code is analyzed, provenance tracking compo-
nents can be embedded. This includes instrumented libraries,
configuration components, and network services compo-
nents. Embedding may be accomplished through binary code
injection, where binary instructions are overwritten in the
original application. Block 204 then re-creates a deployable
application by repacking the updated components with the
original components. This may also include certifying the
code by re-signing it with a cryptographic signature if needed.

As will be appreciated by one skilled in the art, aspects of
the present invention may be embodied as a system, method
or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware
embodiment, or an embodiment combining software and
hardware aspects that may all generally be referred to herein
as a “circuit,” “module” or “system.” Furthermore, aspects of
the present invention may take the form of a computer pro-
gram product embodied in one or more computer readable
medium(s) having computer readable program code embod-
ied thereon.

Any combination of one or more computer readable medi-
um(s) may be utilized. The computer readable medium may
be a computer readable signal medium or a computer read-
able storage medium. A computer readable storage medium
may be, for example, but not limited to, an electronic, mag-

US 9,276,829 B2

5

netic, optical, electromagnetic, infrared, or semiconductor
system, apparatus, or device, or any suitable combination of
the foregoing. More specific examples (a non-exhaustive list)
of the computer readable storage medium would include the
following: an electrical connection having one or more wires,
a portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), an optical fiber, a portable compact disc read-only
memory (CD-ROM), an optical storage device, a magnetic
storage device, or any suitable combination of the foregoing.
In the context of this document, a computer readable storage
medium may be any tangible medium that can contain, or
store a program for use by or in connection with an instruction
execution system, apparatus, or device.

A computer readable signal medium may include a propa-
gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag-
netic, optical, or any suitable combination thereof. A com-
puter readable signal medium may be any computer readable
medium that is not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or in connection with an instruction execution system,
apparatus, or device.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, including
but not limited to wireless, wireline, optical fiber cable, RF,
etc., or any suitable combination of the foregoing. Computer
program code for carrying out operations for aspects of the
present invention may be written in any combination of one or
more programming languages, including an object oriented
programming language such as Java, Smalltalk, C++ or the
like and conventional procedural programming languages,
such as the “C” programming language or similar program-
ming languages. The program code may execute entirely on
the user’s computer, partly on the user’s computer, as a stand-
alone software package, partly on the user’s computer and
partly on a remote computer or entirely on the remote com-
puter or server. In the latter scenario, the remote computer
may be connected to the user’s computer through any type of
network, including a local area network (LAN) or a wide area
network (WAN), or the connection may be made to an exter-
nal computer (for example, through the Internet using an
Internet Service Provider).

Aspects of the present invention are described below with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations and/
or block diagrams, and combinations of blocks in the flow-
chart illustrations and/or block diagrams, can be imple-
mented by computer program instructions. These computer
program instructions may be provided to a processor of a
general purpose computer, special purpose computer, or other
programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data pro-
cessing apparatus, create means for implementing the func-
tions/acts specified in the flowchart and/or block diagram
block or blocks.

These computer program instructions may also be stored in
a computer readable medium that can direct a computer, other
programmable data processing apparatus, or other devices to
function in a particular manner, such that the instructions
stored in the computer readable medium produce an article of

15

25

40

45

55

6

manufacture including instructions which implement the
function/act specified in the flowchart and/or block diagram
block or blocks. The computer program instructions may also
beloaded onto a computer, other programmable data process-
ing apparatus, or other devices to cause a series of operational
steps to be performed on the computer, other programmable
apparatus or other devices to produce a computer imple-
mented process such that the instructions which execute on
the computer or other programmable apparatus provide pro-
cesses for implementing the functions/acts specified in the
flowchart and/or block diagram block or blocks.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer program
products according to various embodiments of the present
invention. In this regard, each block in the flowchart or block
diagrams may represent a module, segment, or portion of
code, which comprises one or more executable instructions
for implementing the specified logical function(s). It should
also be noted that, in some alternative implementations, the
functions noted in the blocks may occur out of the order noted
in the figures. For example, two blocks shown in succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block diagrams
and/or flowchart illustration, can be implemented by special
purpose hardware-based systems that perform the specified
functions or acts, or combinations of special purpose hard-
ware and computer instructions.

Reference in the specification to “one embodiment™ or “an
embodiment” of the present principles, as well as other varia-
tions thereof, means that a particular feature, structure, char-
acteristic, and so forth described in connection with the
embodiment is included in at least one embodiment of the
present principles. Thus, the appearances of the phrase “in
one embodiment” or “in an embodiment”, as well any other
variations, appearing in various places throughout the speci-
fication are not necessarily all referring to the same embodi-
ment.

It is to be appreciated that the use of any of the following
“/”, “and/or”, and “at least one of”, for example, in the cases
of “A/B”, “A and/or B” and “at least one of A and B”, is
intended to encompass the selection of the first listed option
(A) only, or the selection of the second listed option (B) only,
or the selection of both options (A and B). As a further
example, in the cases of “A, B, and/or C” and “at least one of
A, B, and C”, such phrasing is intended to encompass the
selection of the first listed option (A) only, or the selection of
the second listed option (B) only, or the selection of the third
listed option (C) only, or the selection of the first and the
second listed options (A and B) only, or the selection of the
first and third listed options (A and C) only, or the selection of
the second and third listed options (B and C) only, or the
selection of all three options (A and B and C). This may be
extended, as readily apparent by one of ordinary skill in this
and related arts, for as many items listed.

Referring now to FIG. 3, a detailed view of an application
104 is shown. The application 104 is built from software-
based components and may include system libraries, which
are provided by the platform. System libraries may include
access to platform-level services, such as networking and
storage, and well as provide building blocks for applications,
such as user interface widgets.

Rather than linking to standard versions of the system
libraries, the present principles transparently link the appli-

US 9,276,829 B2

7

cation 104 to an instrumented version of the components 302
and libraries 304 which is capable of collecting arbitrary data
about the running application 104, such as which system calls
it is making, when certain events or application function calls
have occurred, and contextual information read from plat-
form sensors. The instrumented components 302 are mem-
bers of the instrumented libraries 304. In particular, the
instrumented components 302 and libraries 304 are config-
ured to track data-related events within the application 104,
such as the creation and update of data files. The instrumented
library 304 may be linked to the application by, for example,
using code analysis and binary code injection to add new
capabilities to applications, without the need for the original
source code. In this case, a provenance layer 306 is transpar-
ently added as a part of the instrumented system libraries 304.
During instrumentation, the provenance layer 306 is
appended to the code of the application 104 and enabled at
runtime.

The provenance layer 306 monitors data-related events
reported by the instrumented components 302 as they interact
with local storage 106. The provenance layer 306 maintains a
provenance log 308 of data-related events, which can also be
stored locally. Optionally, the provenance layer can upload
the provenance log 308 periodically to a remote provenance
server 110. The provenance server 110 aggregates prov-
enance logs across multiple instances of the provenance layer
306 on different clients 102 to perform analytics. The prov-
enance server 110 may further be configured to communicate
with the instrumented components 302 to alter the behavior of
the application.

As an example, consider a word processor application that
writes documents to local storage 106. When the application
104 calls the file system service through system libraries 304,
the provenance layer 306 can record the event that new data
has been created in the provenance log 308. When the appli-
cation 104 writes data into the file, the provenance layer 306
records that data is updated. Later, the application 104 may
call upon the network 108 to copy the file to a network-based
storage device 112. Since this is also done through the instru-
mented library 304, the provenance layer 306 can observe and
record that data is replicated.

In the case of copying a file from the local storage 106 to
remote storage 112, two instances of the provenance tracking
system may be involved, each running independently of the
other. The source provenance layer 306 reports that it has
replicated data to a target client, while the target client records
that it has received data from the source client. Expanding this
principle across many instances of the provenance tracking
system, it is possible to aggregate all events across all the
different instances of the provenance tracking system at prov-
enance server 110. The provenance server 110 can perform
analysis on the events to create a data provenance model. One
example of such a model is a snapshot of the location of all the
datain a distributed system, including versioning information
and changes performed on the data at each node. A history of
snapshots may be maintained at the provenance server 110 to
form a timeline of the evolution of data creation, transforma-
tion, and migration across the observed system. Such infor-
mation is useful for many enterprise-related tasks, such as
data audits, resource monitoring, and compliance.

The provenance server 110 can control the behavior of
provenance layer 306 by issuing command and control mes-
sages. A messaging protocol, such as message queue telem-
etry transport (MQTT) can be used for communication from
the instrumented libraries 304 to the provenance server 110.
Based on the provenance information reported by provenance
layer 306, the provenance server 110 may send configuration

10

15

20

25

30

35

40

45

50

55

60

65

8

information and/or commands back to the client. For
example, the provenance layer 306 may report that it is cur-
rently replicating data to storage provider A. Administrators
may conclude that storage provider A is no longer acceptable
and may reconfigure the application 104 to migrate its data to
storage provider B. This includes both a new configuration
(switch to provider B) and also the commands to perform the
migration (e.g., copy data from A to B). These command and
control messages may be triggered automatically according
to a policy manager. For example, if a state model shows that
data is copied from A to B, the policy may trigger a message
to A that it should also copy the item to C to maintain data
redundancy. Configuration at this level needs instrumentation
that is specifically tailored for a given application 104.

Referring now to FIG. 4, a method of provenance tracking
is shown. Block 402 launches an application 104 that has had
a provenance layer 306 added. When the provenance layer
306 instantiates, it loads in configuration information from a
local policy file or, if the network is available, it may down-
load the latest configuration information from the provenance
server 110. Block 404 determines whether a new configura-
tion is available and, if so, block 406 obtains the new con-
figuration. Block 408 configures the provenance layer
accordingly.

Once configured, the provenance layer 306 enters moni-
toring mode and waits for events from the instrumented com-
ponents 302 at block 410. The instrumented components 302
maintain their original behavior so that, from an application
standpoint, provenance tracking is unobtrusive and, ideally,
completely invisible to the user. When the provenance layer
306 receives an event, it checks at block 412 whether the event
is related to a local data action or if the event was received
through network services from the provenance server 110.
External events may call for a command to be followed, so the
provenance layer 306 evaluates the external event at block
416 and takes any necessary action at block 418. If the event
is internal, the provenance layer 306 logs that the event
occurred at block 414 and returns to monitoring at block 410.
This process continues for as long as the application 104 runs
and generates a provenance log 308, either stored locally or
communicated to the provenance server 110.

Referring now to FIG. 5, a method of aggregating prov-
enance events and taking action based on those events is
shown. Because applications may be provided with a prov-
enance layer 306 at any time, there will not necessarily be a
list of known clients. As such, the provenance server 110
flexibly accepts provenance information from new users by
identifying a new client at block 501. The provenance server
110 receives provenance logs 308 at block 502 from one or
more devices 102. These devices 102 may have instrumented
applications 104 as described above or may have provenance
functions incorporated by design. At block 504 the prov-
enance server processes the logs. Block 506 begins an analy-
sis phase, where the provenance server 110 may pre-process
the provenance logs 308 to clean up noisy data and then
performs analysis on the logs 308. For example, such analysis
may include creating or updating a state model at block 508.

An update to the state model at block 508 triggers a deter-
mination at block 510 of whether any action is dictated by the
provenance server’s policies. If so, block 512 generates a
command/control message for the provenance layer 306 that
is transmitted via network 108. Processing then returns to
block 502 to receive further provenance logs 308.

It should be recognized that the flexible addition of new
clients may be performed in any suitable manner to ensure
that accurate information is provided to the provenance server
110. The provenance layer 306 may send authentication

US 9,276,829 B2

9

information or may otherwise be uniquely identified to allow
the provenance server 110 to identify the particular client or
device sending the information. The provenance server 110
may itself provide this information upon a first identification,
such that the provenance layer 306 stores identity information
in local storage 106 to use in future connections. By providing
for the identification of new users, block 501 makes it pos-
sible for the provenance server 110 to flexibly adapt to the
introduction of new clients.

Referring now to FIG. 6, a diagram of an application instru-
mentation system 600 is shown. A memory 604 holds an
application binary that lacks the ability to track provenance
information. An application analysis module 606 reviews the
application binary in memory to locate insertion points where
provenance tracking code may be injected. An instruction
alteration module 608 uses processor 602 to change instruc-
tions at the insertion points, such that those instructions call
instrumented libraries 304 instead of their originally linked
libraries.

Having described preferred embodiments of a system and
method for transparently tracking provenance information in
distributed data systems (which are intended to be illustrative
and not limiting), it is noted that modifications and variations
can be made by persons skilled in the art in light of the above
teachings. It is therefore to be understood that changes may be
made in the particular embodiments disclosed which are
within the scope of the invention as outlined by the appended
claims. Having thus described aspects of the invention, with
the details and particularity required by the patent laws, what
is claimed and desired protected by Letters Patent is set forth
in the appended claims.

What is claimed is:
1. A method for enabling an application to track prov-
enance information, comprising:

analyzing an application binary to discover injection points
for provenance tracking code, wherein said injection
points correspond to existing library calls;

overwriting instructions in the application binary at the
injection points with a processor to create an instru-
mented application, wherein the overwritten instruc-
tions provide library calls to one or more instrumented
libraries that invoke a provenance layer to track data
operations; and

deploying the instrumented application on a client device.

10

15

20

25

30

35

40

10

2. The method of claim 1, further comprising providing a
provenance server on a separate device in communication
with the provenance layer.

3. The method of claim 2, further comprising receiving
provenance logs at the provenance server from the prov-
enance layer.

4. The method of claim 3, further comprising building a
provenance state model that represents a present state of data
flows at the client device using the provenance logs.

5. The method of claim 4, wherein building the provenance
state model comprises combining provenance logs from a
plurality of client devices to represent a global state of data
flows.

6. The method of claim 5, wherein the one or more instru-
mented libraries further provide a configuration interface that
can receive commands and alter the behavior of the instru-
mented application.

7. The method of claim 6, further comprising issuing com-
mands to the configuration interface from the provenance
server in accordance with the global state of data flows and
one or more data policies.

8. The method of claim 1, wherein the data operations
comprise file system calls.

9. A method for tracking provenance information, com-
prising:

catching and logging data events performed by an instru-

mented application at a provenance layer with a proces-
sor, wherein overwritten library call instructions provide
library calls to one or more instrumented libraries that
invoke the provenance layer to track data operations and
wherein the instrumented libraries provide a configura-
tion interface that can receive commands and alter the
behavior of the instrumented application;

creating a provenance log that includes the logged data

events;

identifying a client device running the instrumented appli-

cation to a provenance server;

building a provenance state model that represents a present

state of data flows at the client device using the prov-
enance logs; and

sending the provenance log to the provenance server.

10. The method of claim 9, further comprising receiving
commands at the configuration interface from the provenance
server in accordance with a global state of data flows and one
or more data policies.

#* #* #* #* #*

